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We investigate hyperinterpolation operators based on positive weighted quad-
rature rules, as introduced by Ian H. Sloan. If the rules are exact of double degree
then, independently of the number of their nodes, the operator norms increase at
the order of the minimal projections. � 2000 Academic Press
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1. INTRODUCTION AND MAIN RESULT

Let r # N"[1] be a fixed space dimension. For + # N0 let P+ denote the
subspace of C(S r&1) consisting of all restrictions onto the unit sphere
S r&1 :=[x # S r&1 : |x|=1] of a r-variate polynomial of (total) degree +.
The elements of C(S r&1) are called spherical functions, and those of P+

spherical polynomials of degree +. We write the euclidean inner product of
x, y # Rr as xy. Our concern are linear projections

L: C(S r&1) � P+ , (1.1)

furnished by the norm

&L& :=max[&Lf &� : f # C(S r&1), & f &��1] (1.2)

with & }&� the uniform norm in C(S r&1). The standard measure | of
C(S r&1) induces the inner product

( f, g) =|
Sr&1

f (x) g(x) d|(x), f, g # C(S r&1). (1.3)
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The corresponding orthogonal projection

6+ : C(S r&1) � P+ (1.4)

is described by

(6+ f )(x)=|
Sr&1

f (t) P+(xt) d|(t), f # C(S r&1), x # S r&1, (1.5)

P+(xy), x, y # S r&1, the reproducing kernel function of P+ , i.e.,

P+=:+ } P ((r&1)�2, (r&3)�2)
+ , (1.6)

where P (:, ;)
+ are the Jacobi polynomials of degree + and indices :, ; and

where :+ is defined by the equation

P+(1)=
1

|r&1

dim(P+).

We note that

:+=O(+(r&1)�2) (1.7)

holds as + � �. For details see [7].
Daugavet [3] proved, as a generalisation of a result of Berman [2], that

6+ is minimal for arbitrary r�2, i.e., that

&6+&�&L& (1.8)

holds for arbitrary projections (1.1) even in the uniform norm.
In case of r=2 the minimal interpolatory projection is characterized by

an equally spaced distribution of its nodes on the unit circle (trigonometric
equioscillation theorem, de Boor and Pinkus [4]). Its uniform norm has
been expressed before by Ehlich and Zeller [5] in form of the following
finite trigonometric sum,

:
2+

j=0

1<sin \2 j+1
2++1

}
?
2+t

2
?

ln(+), + � �.

Summarizing we may state that we possess full knowledge of the minimal
interpolatory projection problem in case r=2.

In case of r�3 we know the order of the minimal projection norm
precisely, as the result of Daugavet includes the asymptotics

&6+&t?r } +(r&2)�2, + � �, (1.9)
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where even the constant ?r>0 is explicitly known. But we do not know
whether this order can be obtained by interpolatory projections. This is the
background on which the concept of hyperinterpolation, presented by Ian
H. Sloan [9], must be valued.

Hyperinterpolation operators L+ : C(S r&1) � P+ arise if the orthogonal
projection (1.5) is evaluated by a quadrature rule Q+ ,

Q+ f = :
M+

&=1

A& f (t&), (1.10)

based on nodes t1 , ..., tM+ # S r&1 and positive weights A1 , ..., AM+>0,
provided it is exact of degree 2+. This requires

M+�N+ :=dim(P+)=\++r&1
r&1 ++\++r&2

r&1 +t
2+r&1

(r&1)!
(1.11)

as + � �, cf. [7], where equality holds if and only if Q+ is a Gau;-rule.
Such rules do not exist for (r, +)�(3, 3) by a result of Bannai and
Damerell [1] on the (non-) existence of tight spherical designs. So hyperin-
terpolation necessarily requires, in this case, M+>N+ nodes, and hence its
concept leaves the concept of interpolation. We should mention, however,
that 2++1 equally spaced nodes on the unit circle in R2 always support a
Gau?-rule, such that the corresponding hyperinterpolation and interpola-
tion operators coincide.

In what follows we consider hyperinterpolation operators L+ , + # N0 ,
which are based on rules Q+ which satisfy

A1>0, ..., AM+
>0, (1.12)

Q+ f =|
Sr&1

f (x) d|(x) for all f # P2+ . (1.13)

It is well known that sequences of quadrature rules of this kind exist where,
in addition, the number of nodes is bounded in form

M+�kr N+ for all + # N0 (1.14)

kr>1 a constant depending on the space dimension. For a detailed discus-
sion of this question we refer to Sloan [10].

Hyperinterpolation operators have the explicit form

L+ f ( } )= :
M+

&=1

A& f (t&) P+(t& } ), + # N0 . (1.15)
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Hence L+ f vanishes if f vanishes in all the nodes. Counterexamples show
that this need not be true in case of 6+ f. So the operators are different, in
general. But hyperinterpolation operators are projections L+ : C(S r&1) �
P+ , and Sloan and Womersley [11] proved that

&L+&=O(+(r&1)�2), (1.16)

holds for + � � and arbitrary r�3, while in the important case of r=3
even the stronger result

&L+&=O(+1�2), (1.17)

+ � �, is valid, supposing that a certain regularity condition on the distri-
bution of the nodes is satisfied, which holds, for instance, if product Gau;
rules are used. This is an important result as the order in (1.17) is the order
of the minimal projection norms, cf. (1.9), and hence cannot be improved.
As it is possible to satisfy (1.14), these results say that hyperinterpolation
is a strong alternative to interpolation�for which we have no comparable
results until now. This is challenge for the future.

In this paper we improve the results of Sloan and Womersley by methods
we used before in the treatment of other related problems [6, 8]. The main
result consists in the observation that the regularity condition is satisfied
by its own, and this for arbitrary dimension r. As this was the key for the
best order result of Sloan and Womersley for r=3 it is plausible that the
following general result holds.

Theorem 1. Let r # N"[1, 2]. Then positive constants ar and br exist
such that

ar+ (r&2)�2�&L+&�br+(r&2)�2

holds for arbitrary hyperinterpolation operators L+ : C(S r&1) � P+ , + # N,
whose defining quadrature rule Q+ satisfies (1.12) and (1.13).

2. THE REGULARITY CONDITION

In this section we assume r # N"[1, 2] to be fixed. So, for simplicity, we
are allowed not to notify the dependency of quantities on r if the context
is admitting this. Recall (1.6), i.e.,

P+=:+ } P ((r&1)�2, (r&3)�2)
+ .
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Let P� + :=P+ �P+(1) and define Z& by

Z&(,) :=1(&+1) \2
,+

&

J&(,),

where J& is the Bessel function of index & := r&1
2 �1. The normalisation of

these functions is such that P� +(1)=1=Z&(0), and that

lim
+ � �

P� + \cos
,
++=Z&(,) (2.1)

holds uniformly for , in a compact set, see Szego� [12, (8.1.1)].
Next let x+=cos %+ , 0<%+<?, denote the greatest zero of P+ , + # N. By

the monotonicity of the zeros of the Jacobi polynomials with respect to :
and ; [12 (6.21.2) and (6.21.3)], cos %+ is not less than the greatest zero
of the Legendre polynomial P(0, 0)

+ , and [12, (6.21.5)] implies

%+�
1

2++1
, + # N0 . (2.2)

So we get +%+� 1
3 and

%+

2
��+ :=

#
+

, # :=
?
20

, (2.3)

for + # N, independently of the value of r. From (2.1) it follows that

%+ t
j&

+
, + � �,

holds if j& is the lowest positive zero of J& or Z& , which is the same. By the
interlacing property of the zeros of Bessel functions we get

j&�min[ j1�2 , j1]�min {?
2

, 3.8==
?
2

,

see Watson [14, pp. 54 and 748]. It follows that

#< j& (2.4)

holds, independently of the value of r, again.
We discussed the function Z& in [8]. Especially it is monotonically

decreasing in the interval [0, j&]. Because of (2.1) and (2.4) this yields

P� + \cos
#
++�

1
2

Z&(#)>
1
2

Z&( j&)=0
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for sufficiently great +, say +�+0 . Together with

P� + \cos
#
++�P� + \cos

%+

2 +>P� +(cos %+)=0,

which holds for +=1, 2, ..., +0 cf. (2.3), this implies that a constant c1>0
exists such that

P� + \cos
#
++��|r&1

c1

, + # N, (2.5)

is valid. The constant depends on r, though this is not notified.

Lemma 1. Let r # N"[1, 2] be fixed. Assume Q+ , + # N, satisfies (1.12)
and (1.13). Then, with �+ defined in (2.3),

:
tj x�cos �n

Aj�c1 } N &1
+ (2.6)

holds for arbitrary x # S r&1, where c1 is the constant of (2.5).

Proof. Let x # S r&1 be arbitrary. Then we get

:
M+

j=1

AjP2
+(t jx)=|

S r&1
P2

+(tx) d|(t)=P+(1), (2.7)

where we used that P+( } x) reproduces itself at the point } =x. Because of
(2.3), P2

+(cos ,) is monotonically decreasing for 0�,��+ , which implies

P2
+(cos �+) } :

tjx�cos �+

Aj�P+(1),

or, because of (2.3) and (2.5),

:
tj x>cos �+

Aj�
1

P+(1)
}

1
P� 2

+(cos(#�+))
�

c1

|r&1

}
1

P+(1)
.

But

|r&1 P+(1)=N+ , (2.8)

cf. [7], which finishes the proof.

Remark. In case r=3, but apart of the special value of the constant #,
which is of no importance, inequality (2.6) is the regularity condition of
Sloan and Womersley [11]. As it holds by its own, (1.17) is unconditionally
valid by their results.
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3. COVERING THE SPHERE AND SPHERICAL CAPS

In what follows we investigate coverings of the sphere S r&1, r # N"[1],
by spherical caps

K(t, ,) :=[x # S r&1 | tx�cos ,],

t # S r&1, of a fixed radius ,, 0<,<?. To this end let G+(xy), x, y # S r&1,
be the reproducing kernel function of the space of spherical harmonics of
degree + # N0 . It is well known [7] that

G+=const } C (r&2)�2
+ , (3.1)

C*
+ the Gegenbauer polynomial of degree + and index *, the constant being

of no interest, here. For + # N let us define

z+=cos(/r
+), 0</r

+<?, (3.2)

to be the greatest zero of G+ . We have to notify the dependence of /r
+ on

r for later use. It is also well known [13, p. 186] that

/r
+ t

1
+

} j(r&3)�2 , + � �, (3.3)

holds, implying that there is a constant $r>0 such that

/r
+�

1
+

$r (3.4)

is valid for arbitrary + # N.
It was the observation of V. A. Yudin [15], that a spherical design

always furnishes some covering of the sphere by caps of a certain radius.
His idea can be generalized immediately to get the following lemma.

Lemma 2. Let r # N"[1], + # N0 . Assume the quadrature rule (1.10)
satisfies (1.12) and (1.13). Then

S r&1/ .
M+

j=1

K(tj , /r
+). (3.5)

We gave a modified proof in [8].

Remark. The essence of Lemma 2 is that the assumptions can be
realized under the additional condition of (1.14). In other words, there
exists a constant kr>1 such that the sphere S r&1 can be covered by at
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most krN+ caps of radius / r
+ . Next we shall use Lemma 2 in the construc-

tion of coverings for caps K(t, ,), t # S r&1, 0<,� ?
2 , by smaller caps.

Lemma 3. Let r # N"[1, 2] be fixed. Then q>0 exists such that for
arbitrary t # S r&1, + # N and , # (�+ , ?

2] the cap K(t, ,) can be covered by
at most R(+, ,) caps of radius �+ , where

R(+, ,)<q } (+ sin ,)r&1

holds for �+�,� ?
2 . R(+, ,) does not depend on the choice of t.

Proof. We generalize a construction, which Sloan and Womersley [11]
used in the proof of (1.17) in case of r=3, to arbitrary dimensions, where
Lemma 2 will be the important tool.

So let r # N"[1, 2] be arbitrary, but fixed, and let + # N. By Lemma 2 we
know how S r&2 can be covered by caps of radius /r&1

+ , or greater than
that.

Now let t # S r&1 be arbitrary. We define a partition of the interval [0, ?
2]

by introducing the points

,j :=�+ } j=
?

20+
} j, j=1, ..., 10+, (3.6)

see (2.3). Obviously we get, because of ,1=�+ ,

K(t, ,)/K(t, �+) for 0<,�,1 , (3.7)

i.e., one single cap of radius �+ is covering K(t, ,) in this case.
We are now going to study coverings of caps K(t, ,) where ,1<,� ?

2.
In the beginning we follow still the idea of Sloan and Womersley and
introduce the spherical collars

Bj :=[x # S r&1 | cos ,j+1�tx�cos ,j]

for j=1, ..., 10+&1. But after this we define

S r&2
t :=[u # S r&1 | ut=0],

which is a unit sphere as S r&1 is, but of one dimension less, and assume
that } # N is an arbitrary number, but so great that

2?
}

$r&1�- 2&1. (3.8)
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Because of Lemma 2 we can cover S r&2
t for every fixed j # [1, ..., 10+&1]

by M r&1
}j caps with radius / r&1

}j , say with centers uj, k # S r&2
t , this means by

K(uj, k , /r&1
}j ), k=1, ..., M r&1

}j , (3.9)

where according to the Remark, but with r&1 instead of r, }j instead of
+ and with a suggestive change in the notation,

M r&1
}j �kr&1N r&1

}j (3.10)

holds for some constant kr&1>1 where

N r&1
{ =\{+r&2

r&2 ++\{+r&3
r&2 + (3.11)

for { # N0 , see (1.11). In addition we define ,� j := 1
2 (,j+,j+1) and introduce

the nodes

tj, k :=cos ,� j } t+sin ,� j } uj, k # Bj (3.12)

for k=1, ..., M r&1
}j .

After these constructions let x # Bj , say

x=cos ! } t+sin ! } u, u # S r&2
t , , j�!�,j+1 , (3.13)

where u is uniquely determined by x. Obviously, by the covering property
of the caps (3.9) there is a point uj, k such that u # K(uj, k , /r&1

}j ), i.e., that

uuj, k�cos /r&1
}j �cos \ 1

}j
$r&1+ , (3.14)

the last inequality following from (3.4) and (3.8), where a consequence of
(3.8) is that 1

}j $r&1< ?
2 such that the cosine is monotonically decreasing in

the interval of interest.
We want to estimate the distance between x and t j, k . To this end we

introduce the point

t� j :=cos ,� j } t+sin ,� j } u # Bj , (3.15)

and, by the triangle inequality,

|x&tj, k |�|x&t� j |+ |t� j&tj, k |. (3.16)

First we get from (3.13) and (3.15), together with (3.6),

|x&t� j |2=(cos !&cos ,� j)
2+(sin !&sin ,� j)

2=4 } sin2 !&,� j

2
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and hence

|x&t� j |�2 sin
�+

4
. (3.17)

Next we get from (3.15) and (3.12)

|t� j&tj, k |2=sin2 ,� j } |u&uj, k | 2=2 sin2 ,� j } (1&uuj, k)

�2 sin2 ,� j } \1&cos \ 1
}j

$r&1++
=4 sin2 ,� j } sin2 \ 1

2}j
$r&1+ ,

the inequality following from (3.14). So we obtain

|t� j&tj, k |�,� j }
1
}j

} $r&1=\1+
1
2 j+ } �+ }

1
}

$r&1

�2 \2
?

}
�+

4 + } \2?
}

$r&1+
�2 \sin

�+

4 + } \2?
}

$r&1+ .

By the choice of }, cf. (3.8), we get the estimate

|t� j&tj, k |�2(- 2&1) sin
�+

4
, (3.18)

independently of the value of j. Together with (3.16), (3.17) this yields

|x&t j, k |�2 - 2 sin
�+

4
,

1&xtj, k=
1
2

|x&tj, k |2�4 sin2 �+

4
=2 \1&cos

�+

2 +
and finally

xtj, k�&1+2 cos
�+

2
�&1+2 cos2 �+

2
=cos �+ ,

which is the same as

x # K(tj, k , �+). (3.19)
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This means that Bj is covered by the caps

K(tj, k , �+), k=1, ..., M r&1
}j .

Now we return to our original problem, namely to cover K(t, ,) under the
condition (�+=) ,1<,� ?

2 . But in this case we get

K(t, ,)/K(t, �+) _ B1 _ } } } _ Bi ,

provided we choose

i :=� ,
�+ |&1. (3.20)

It follows from the result of above that K(t, ,) can be covered by R(+, ,)
caps of radius �+ where

R(+, ,)�1+ :
i

j=1

M r&1
}j .

In view of (3.10), (3.11) this implies

R(+, ,)�1+kr&1 :
i

j=1
{\}j+r&2

r&2 ++\}j+r&3
r&2 += .

The argument of the sum is a polynomial of degree r&2 with respect to j.
So there is a constant q$ such that

R(+, ,)�q$ } ir&1

holds independently of the value of i, and thus of ,. Together with (3.20)
and (2.3) this yields

R(+, ,)�q$ } \ ,
�++

r&1

=q$ } #r&1 } (+,)r&1.

So we get, finally,

R(+, ,)�q } (+ sin ,)r&1

with the constant q :=q$#1&r( ?
2)r&1. This finishes the proof.
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4. PROOF OF THEOREM 1

Again let r # N"[1, 2] be fixed and let L+ , + # N, be as in Theorem 1.
L+ is a projection, so

&L+&�&6+&t?r } + (r&2)�2

holds for + � �, (1.9), and the existence of a proper constant ar follows.
Next we get from (1.15) the upper estimate

&L+&�max { :
M+

&=1

A& |P+(t&x)|: x # S r&1= .

It follows that

&L+&�S +
+ +S &

+ (4.1)

holds if we define

S +
+ :=max { :

t&x�0

A& |P+(t&x)|: x # S r&1= ,

S &
+ :=max { :

&t&x�0

A& |P+(t&x)|: x # S r&1= .

S &
+ has the same form as S +

+ , except that it belongs to the hyperinterpola-
tion operator L� + which arises if Q+ is applied to the representation of
(6+ f )(x) in (1.5) where the integrator t is replaced by &t. This means that
in (1.15) the nodes t& are replaced by t� &=&t& . The arising quadrature rule
Q� + satisfies (1.12) and (1.13), again. So it suffices to estimate S +

+ , only.
To this end we estimate the expression

:
t& t�0

A& |P+(t& t)|

for a fixed t # S r&1 to above, where it is helpful to use the weighted nodes
counting function

A(,) := :
t& t�cos ,

A& , 0�,�?,

which is nonnegative and monotonically not decreasing. Note that

A(?)=Q+1=|r&1 (4.2)
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holds as Q+ is exact for the constants. In addition, according to Lemma 3
we can cover K(t, ,), �+�,� ?

2 , by R(+, ,)<q(+ sin ,)r&1 caps of radius
�+ . By Lemma 1 the contribution of each cap of this size to A(,) is at most
c1N &1

+ . Together this yields

A(,)�qc1 N &1
+ (+ sin ,)r&1, �+�,�

?
2

.

So, in view of (1.11), a constant c2 exists such that

A(,)�c2(sin ,)r&1, �+�,�
?
2

, (4.3)

holds for arbitrary + # N. Now we get, with the definitions of Section 3,

:
t& t�0

A& |P+(t&t)|�P+(1) :
t& # K(t, �+)

A&+|
?�2

�+

|P+(cos ,)| dA(,), (4.4)

where the integral has to be defined in the sense of Riemann and Stieltjes.
We used a similar representation earlier [6] in the estimation of the row
sums of some fundamental matrices.

The first term can be estimated by the help of Lemma 1 together with (2.8):

P+(1) :
t& # K(t, �+)

A&�
c1

|r&1

. (4.5)

For the estimate of the second term we first recall that �+= #
+ where #= ?

20 ,
cf. (2.3). Using Szego� [12, (7.32.5)], (1.6), (1.7) and the well known
equation

P ((r&1)�2, (r&3)�2)
+ (1)=\++

r&1
2

+ + ,

we find that there is a positive constant c3 such that

(sin ,)r�2 |P+(cos ,)|�c3+(r&2)�2, �+�,�
?
2

, (4.6)

holds for arbitrary + # N. So we get, using in what follows (4.6), integration
by parts, (4.3) (to obtain the third inequality), and (4.2),
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|
?�2

�+

|P+(cos ,)| dA(,)

�c3+(r&2)�2 } |
?�2

�+

(sin ,)&r�2 dA(,)

�c3+(r&2)�2 {A \?
2++

r
2 |

?�2

�+

A(,) (sin ,)&(r+2)�2 cos , d,=
�c3+(r&2)�2 {A(?)+

r
2

c2 |
?�2

0
(sin ,)r&1 (sin ,)&(r+2)�2 cos , d,=

=c3+(r&2)�2 {|r&1+
r
2

c2 |
?�2

0
(sin ,) (r&4)�2 cos , d,=

=c3+(r&2)�2 {|r&1+
r

r&2
c2= .

Now let

br :=2 \ c1

|r&1

+
r

r&2
c2 c3+|r&1c3+ .

Then, inserting in (4.4) our result together with (4.5), we get

:
t& t�0

A& |P+(t& t)|� 1
2 br +(r&2)�2, + # N.

As t was arbitrary, this yields

S +
+ � 1

2br+(r&2)�2, + # N.

For S &
+ the same bound holds. So we get from (4.1)

&L+&�br +(r&2)�2, + # N,

and Theorem 1 is proved.

Remark. We should point out that the existence of quadrature rules for
S r&2

t which satisfy (1.14) with r&1 instead of r was helpful in the proof of
Lemma 3. Actually the constant q depend on kr&1 , and so does br in
Theorem 1.
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